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Reflection of waves by a profile with discontinuities 

John Lekner 
Department of Physics, Victoria University of Wellington, Wellington, New Zealand 

Received 16 January 1990 

Abstract. Formulae are derived for the reflection and transmission amplitudes for a potential 
or dielectric function profile which has discontinuities in value and/or  slope at its boun- 
daries. These formulae, which are based on the Liouville-Green wavefunctions, are accurate 
at short wavelengths in general, and exact at all wavelengths for the uniform layer. A 
comparison with an exactly solvable model profile is made. 

1. Introduction 

In the propagation of electromagnetic, acoustic, or particle waves in stratified media, 
the reflection or transmission by a planar stratification is given by the absolute square 
of the reflection and transmission amplitudes r and t, defined by 

(1) 

In some cases (ellipsometry, reflection of beams or pulses), the phase of the complex 
quantities r and t is important, so we will retain phase information here. The total 
wavefunction, for plane waves propagating in the z-x plane, in a medium whose 
properties depend on the z coordinate only, is 

e'41'+ r e-'qI'+ $(z) + f e'42'. 

"(x, z )  = exp(iKx)$(z) ( 2 )  

where K is the x component of the wavevector, and $(z) satisfies 

dZ"+ q2(z)$ = 0. 
dz2 (3) 

The normal or z component of the wavevector is given, for the electromagnetic s wave 
and for particle waves, by 

2m 
h q2(Z) =z ( E  - V(Z))  - K 2 .  (4) 

Here E ( Z )  is the dielectric function, w is the angular frequency of the electromagnetic 
wave, c is the speed of light; m, E and V(z)  are the mass, total energy and potential 
energy of the particle. The electromagnetic p wave and acoustic waves satisfy equations 
a little more complicated than (3) (see Lekner 1987, sections 1.2 and 1.4), but similar 
techniques to those developed here can be used. 
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A general-purpose formula for the reflection amplitude is the Rayleigh or weak- 
reflection approximation 

where 4 is the phase integral 

4 ( z )  = 1' dz s ( 5 )  

(the lower limit in (6) is to be chosen so as to make 4 + qlz  as z +. -CO; see Lekner 
(1987, section 5.6)). This approximation goes back to Rayleigh (1912) and can be 
derived from the Bremmer (1949, 1951) method; see Berry and Mount (1972, section 
2.3, equation (2.29)). The derivation of (5) from a Riccati equation in Lekner (1987), 
section 5.7, shows directly that it applies only if the reflection is weak; hence the 
alternative name weak rejection approximation. The Rayleigh approximation works 
very well when the reflection is small (see Lekner 1987, figures 5.4 and 6.3), but for 
the case considered here, with discontinuities in E ( Z )  or V(z), the reflection can be 
strong, even in the short-wave limit. As an example, consider the step profile, where 
E ( Z )  or V(z) change discontinuously at z = 0: the reflection amplitude is 

41 - 4 2  
r s t e p  = - 

41 + 42 
(7) 

which is independent of frequency in the electromagnetic case. The Rayleigh approxi- 
mation (5) gives $log(q,/q,) in this case, which is close to (7) only when q l / q r -  1 is 
small, and fails completely for small or large values of the ratio q 1 / q 2 .  

In this paper we will develop a method for calculating the reflection amplitude 
which is accurate in the case of discontinuities in E or V, and thus can replace the 
Rayleigh approximation. For concreteness and in order to provide an explicit formula, 
we will restrict ourselves to the case where the discontinuities occur at the boundaries 
of the stratification, as for example in figure 1. 

E l  - 
z 

R b 

Figure 1. A dielectric function profile representing a stratified planar inhomogeneity 
between z = a and z = b. The profile shown has the reciprocal of the refractive index linear 
in z (see equation (20) in section 3 ) .  The values used are E ,  = 1, F,, = (1 .3)2 ,  E,,  =4 ,  and 
E: = (1.5):, representing a dielectric layer between air and glass, at optical frequencies. 
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2. Formulae for r and f based on Liouville-Green wavefunctions 

In this section we will use the general formulae (2.25) and (2.26) of Lekner (1987), 
together with the Liouville (1837) and Green (1837) approximate solutions of (3),  
namely 

These approximate solutions, also known as the W K B  or J W K B  wavefunctions, are 
discussed in more detail in Lekner (1987, section 6.2) .  The general formulae referred 
to above are 

where cy = q ,a ,  p = q2b, F and G are two independent solutions of (3),  and 

( F ,  G )  E F,Gh - G,Fh ( F ,  G') E F,GJ, - G,FL (11) 

etc. Here F, stands for F ( z )  evaluated at z = a, FL for the derivative of F ( z )  evaluated 
at z = a, and so on. Since q is discontinuous at a and b, and (8) are valid approximations 
only for a < z < b, the values and derivatives at a and b are to be understood as limits 
z L a and z 7 b, respectively. 

The formulae (9) and (10) are exact, but in general analytic solutions of (3) are 
not available. Our approximation consists in replacing F by 4- and G by IJ . The 
resulting approximate values of ( F ,  G )  to ( F ' ,  G ' )  are then 

( F ,  G )  = -2i sin A 4  

( F ,  G') 5 iqh(-2 COS A 4  + yh sin A d )  

( F ' ,  G ) - i q u ( 2 c o s A d + y u  sin Ad) 
(12) 

( F ' ,  G' )= iq ,qh ( -2s inAd$- (yu-yh)  cosA4- iyuy ,  s i n A 4 ) .  

The quantities yu and  Yh are values at z =  a and b of the dimensionless function 
y = q ' / q 2  (which should be small in order for CCI, to be accurate solutions of (3); see 
Lekner (1987, section 6 . 2 ) ) ,  and 

is the phase incremeni on going through the stratification from a to b. The Wronskian 
FG'-  GF' in the numerator of (10) is independent of z, and when F, G are approxi- 
mated by ++, +- takes the value -2i( q,qb)1'2. Since the approximation relies on y, 
and  Yh being small, we shall keep only terms of first order in y, and  Yh in evaluating 
r and t .  The results are, with c and s standing for the cosine and  sine of A 4 ,  

r = r , + r , + .  . . t =  f o + t l + .  . . (14) 
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where 

When qa = q h  (15) reduces to the uniform layer reflection amplitude (see for example 
Lekner (1987), equation (2.52)). When qa = q l  and q h  = q 2 ,  that is when there is no 
discontinuity in E or V at either z = a or z = 6, (15) is zero and (16) reduces to equation 
(6.35) of Lekner (1987). 

The corresponding results for the transmission amplitude are 

(18) - e I (  u - p  1 91 ( q a q b  ) I"[( 41 q h y h  - qaq2 Y a  ) s - q a q h  ( ' y ~  - Y h  i c] 
1 -  

[ ( q l q b  +qaq2IC - ( q & b  + 4142) is]? 

When qa = q h  (17) reduces to the uniform layer transmission amplitude (Lekner 1987, 
equation 2.53). In the continuous profile case ( q R  = q l ,  q b  = q2), to takes the perfect 
transmission value q l /  q2)"l eiAd, and 

These expressions are the zeroth and first-order parts of t"' given in Lekner (1987, 
equation (6.46)). 

The expressions (15)-( 18) are high-frequency approximations for the reflection and 
transmission amplitudes due to a profile with arbitrary discontinuities, in value and 
in slope, at its boundaries. In the next section the reflectivity deduced from (15) and 
(16) is compared with the exact reflectivity of a solvable model profile. 

3. A solvable discontinuous model profile 

The results of the previous section have been seen to reproduce the exact r and t for 
a uniform layer (a  discontinuous profile with constant value of E or V over its extent). 
To test the formulae derived there in the more general case of variable E or V, we will 
generalise a model continuous profile introduced by Rayleigh (1880). In optical terms, 
the Rayleigh profile is one in which the reciprocal of the refractive index varies linearly 
with displacement normal to the interface. We thus set (cf Lekner 1982) 

where r , ~ ~  = & ; ' I 2 ,  f7h = E ; ' / '  , A T  = T h  - T,, Az = b - a. On changing the independent 
variable in (3) from z to 7, we have (at normal incidence) 
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The solutions for 4 are v 1 1 ’ 2 i * i  (at arbitrary angle of incidence the solutions are Bessel 
functions; see Lekner (1982)). We can thus set F = 7” ”+”, G = ’7” and use the 
general formulae (9) and  (10). To simplify the resulting expressions, we use the 
conventional optical notation of n for refractive index ( n  = E ’  ’ = T-’) ,  with /- equal 
to the ratio of the refractive indices, 

We find 

( F, G )  = ( n a n h  ) - I  ’(/- I’ - /- ”) 

U -  

C 
( F ’ ,  G’) = 7 ( nu??),)’ 2 (  /J ’’ - /--” ). 

Let us write pLY as e’, where 0 = v log /-. With this substitution in (23), (9) and  (10) give 

2 ( n , n 2 -  nun,,) sinh O+i (c /w) (37 /Az)  

2 ( n , n 2 +  nun,,) sinh e + i ( c / u ) ( A T / A z )  
x [ n,nh(sinh 6 - 2v cosh e )  + n,n,(sinh B +  2v cosh e)] 

(24) r = e?’” 

X[n,nh(Sinh 8-2vCOSh e)-nzn,(sinh 8 + 2 v c o s h  e ) ]  
-4in, ( nonh)’ v( c / w ) (  A T ] / A Z )  

(25) f = e’‘” - P  
2(n ,n ,+  non,) sinh 8 + i ( c / w ) ( b v / A z )  

x[n,n,(sinh e - 2 ~  cosh e)-n,n,(sinh 8 + 2 v  cosh e ) ]  
When n, = n, and nh = n2 (no discontinuity in dielectric function at z = a or b ) ,  these 
expressions reduce to 

= e 2 i a  -4 sinh 8 
v cosh O+i(w/c) (Az/AT)  sinh 0 

The first of these is in agreement with equation (9) of Lekner (1982). 
The analytic form of all of these expressions changes when the magnitude of the 

dimensionless quantity f =  ( w / c ) ( A z / S a )  passes through the value i. When I f 1  > i, Y 
becomes imaginary: v = i /  vi. The reflection and transmission amplitudes in this case 
are obtained from (24) and  (25) by the substitutions 

cosh e + coslel sinh 0 + i sin/el. (28) 
The high-frequency limiting forms of r and f are obtained in this way, making use of 
the fact that when i f 1  is large, Y +  iifl. We find 
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Here we have used the phase increment for the Rayleigh profile, 

These expressions are in exact concord with the normal-incidence versions of (15) and  
(17 ) .  

4. Comparison of theory with the solvable model, and discussion 

We have already noted that the theory based on the Liouville-Green approximate 
wavefunctions is asymptotically correct in the high-frequency limit, for a particular 
solvable model. How well does the theory work at intermediate frequencies? Figure 
2 shows the normal-incidence reflectivity as a function of the dimensionless parameter 
wAz/c .  The refractive indices chosen for the comparison are n ,  = 1, n, = 1.3 n h  = 2, 
n,  = 1.5, corresponding to an  inhomogeneous dielectric layer between air and glass. 
(The corresponding dielectric function, assuming a Rayleigh profile for the transition, 
was shown in figure 1.) The theoretical expressions (15) and (16) require A 4 ,  given 
in (31), and  the parameters yo and yh. For the Rayleigh profile at normal incidence, 
these are equal since then y = q ‘ / q 2  reduces to 

The resulting ro is the same as (20), as noted before, and the resulting r ,  is, with c and  
s again standing for cosine and sine of Ad, 

The agreement between the theory based on the Liouville-Green wavefunctions 
and  the exact solution is seen to be good. At low frequency it is better than can be 
expected in general: it is a special feature of the Rayleigh profile that yo = yh (at normal 

wAz/c 

Figure 2. Exact a n d  approximate normal incidence reflectivities for the dielectric function 
profile shown in figure 1.  The full curbe is the exact reflectivity, obtained as  the absolute 
square of (24)  The two broken curves are  the high-frequency limiting form lro12, given by 
(29), and  lr,+ r J 2 ,  with r l  giken by ( 3 3 ) .  
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incidence only). This removes the divergent term proportional to ( ya - Y h )  cos2 A 4  in 
(16). (The divergence of y at zero frequency can be seen in the first equality of (321.) 
Thus in general the theory will fail at low frequencies, as can be expected from the 
nature of the Liouville-Green approximation to the wavefunctions (see Lekner 1987, 
section 6.2). The low-frequency end of the spectrum has been determined for arbitrary 
profiles (Lekner 1984 and  Lekner 1987, chapter 3 ); for the electromagnetic s wave and 
for particle waves the reflectivity is given by 

where i2  is an integral invariant, a characteristic of a given profile. The general form 
of i2 is given in the references just quoted. From this we find, for the discontinuous 
Rayleigh profile, 

The low-frequency reflectivity given by (34) and ( 3 5 )  is shown in figure 3, together 
with the exact and approximate reflectivities shown before in figure 2 .  

R 

0.03 , 3 0.25 0.50 

W A Z / C  

Figure 3. Detail of the Io\v-frequency reflectivity for the Rayleigh profile a t  normal 
incidence. The profile parameters are  as  in figures 1 and 2. The  loa-frequency limiting 
form. given b> ( 3 4 )  and  ( 3 5 ) .  i5 labelled I.F. 

We remark finally on the periodicily (in the limit of high frequencies) of the exact 
and approximate reflectivities in the frequency-thickness parameter w A z /  c. This is 
due  to the discontinuities in the profile. Actual dielectric functions or potential energies 
may change rapidly, but will not change discontinuously, and thus actual reflectivities 
will eventually (at high enough frequencies or energies) lose periodicity and  decay to 
zero when the changes in e or V no longer appear suddenly on the scale of the 
wavelength. 
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